

PBD-003-0493006 Seat No. _____

B. Sc. / M. Sc. (Applied Physics) (Sem. III) (CBCS) Examination

November / December - 2018

Paper - XII : Modern Physics - II

(New Course)

Faculty Code: 003

Subject Code: 0493006

Time: $2\frac{1}{2}$ Hours] [Total Marks: 70]

Instructions: (1) All questions are compulsory

- (2) Figures in the right side indicate marks.
- 1 Attempt any seven short questions: (Two marks each) 14
 - (1) Write down the principle of Heisenberg's uncertainty.
 - (2) What is Eigen function and Eigen value?
 - (3) Write the law of equipartition of energy.
 - (4) What are the bosons and fermions?
 - (5) Differentiate between classical and quantum statistics.
 - (6) Give the names of pumping method in LASER.
 - (7) Define: (1) Coherence and (2) Monochromaticity.
 - (8) Write some common decay modes of hyperons.
 - (9) Explain: Electromagnetic interactions.
 - (10) What is the concept of particle and antiparticle?
- 2 (a) Write answers of any two:

10

- (1) Derive an equation for the relation between Phase Velocity and Group Velocity.
- (2) What is de-Broglie wavelength? Derive an equation for the de-Broglie wavelength.
- (3) Derive the Time independent Schrodinger's wave equation in three dimensions.
- (4) Derive an expression for the energy of a particle in an infinite square well potential.

		(2)	Write a detailed note on properties of the wave function.	
3	(a)	Writ (1) (2)	te answers of any two : Write a detailed note on distribution functions with necessary diagrams. Derive an expression for probability distribution of particles using Fermi-Dirac statistics.	10
		(3)	Compare Maxwell-Boltzmann (MB), Bose-Einstein (BE) and Fermi-Dirac (FD) Statistics. Derive Maxwell's Boltzmann Distribution law for	
		(4)	a system of n-particles.	
	(b)	Writ	te answer of any two:	4
		(1)	What is phase space and phase point?	
		(2)	What is microscopic and macroscopic systems?	
		(3)	What is the indistinguishability of particles?	
		(4)	State and explain Liouville's theorem.	
4	(a)	Wri	te answers of any two :	10
		(1)	Describe the construction and working of He-Ne LASER.	
		(2)	Explain the principle of Semiconductor LASER with necessary diagram.	
		(3)	Describe the construction and working of Nd-YAG LASER.	
		(4)	What are Einstein's coefficients? State the relation between coefficients.	
	(b)	Writ	te answer of any one :	4
		(1)	Write the applications of LASER in detail.	
		(2)	Explain in detail: absorption and emission in	
PBD	-003-	-0493	LASER. 006] 2 [Cont	td

(1) Write down some applications of Heisenberg's

4

(b) Write answer of any one:

uncertainty principle.

5 (a) Write answers of any two:

- **10**
- (1) Describe the classification of Elementary Particles.
- (2) Describe the concept of Lepton and Baryon Conservation
- (3) Write notes on:
 - (1) Isotopic spin and (2) Hypercharge.
- (4) Write a detailed note on particles and antiparticles.
- (b) Write answer of any one:

4

- (1) What are the fundamental interactions in nature? Explain their relative range and strength.
- (2) Write a short note on π -Meson.